

FEED MANAGEMENT FOR PRODUCTION AND COST EFFICIENCY IN INDIAN SHRIMP FARMING

Victor Suresh United Research | Growel Feeds

FEED

Accounts for about 50% of production cost

Every 0.1 reduction in FCR can increase profitability by INR 7500/ton of shrimp production

PRIME FACTORS DRIVING FEED EFFICIENCY

- Feed quality
- Animal genetics & PL quality
- Pond environment: Soil & Water Quality, Climatic Factors, Algae, Bacteria
- Farm Management:
 - Survival rate & ability to estimate surviving biomass
 - Feeding rate

BEST PRACTICES FOR FEED EFFICIENCY START AT STOCKING

Know Minimize		Estimate	Estimate	Undertake	
As accurately as possible how many PL are being packed	Transport stress and acclimatize properly during stocking	Post-stocking survival by stocking a small sample of PL in a hapa in the pond and measure survival after 24 and 48 h and adjust feed quantity	Survival rate at the first sampling (typically 30 DOC)	On-farm nursery rearing before grow-out	

A good start increases the chances of a successful culture. Especially when risks due to pathogens like EHP are high. Provide high quality balanced feed from DOC 1.

Blind Feeding for 100,000 PL

DOC	Feed Code	Feed increment (g)		
1	1	Start with 1.5 kg*		
2 - 7	1	300		
8 - 13	2	400		
14 - 21	2	500		
22 - 28	3C/3SP	500		

* In many SE Asian Countries, DOC 1 feeding is 2-3 kg per 100,000 PL. Some farmers use up to 4 kg to drive early growth and minimize EHP infection risk.

ESTIMATING SURVIVAL AT FIRST SAMPLING

- DOC 1-30 Blind Feeding: Start with 1.5-3 kg per100,000 PL on DOC 1; add 0.3 - 0.5 kg per day
- At the first sampling (DOC 30), Assume survival at 90% (or lower depending on previous experience at the farm)
- Feed/Day = (Feeding Rate at MBW) x (Stocked Population) x (Survival Assumption)
- 1-1.5% of feed in 3-4 feed trays. Check at 1-1.5 hour.
 - Feed runs out quickly = Increased Survival
 - Feed does not run out = Decreased Survival
- Calculate Feed/Day for subsequent days by adding 0.4-0.8 kg per 100,000 PL depending on MBW target, feed tray observations & shrimp condition.

USING CHECK TRAYS

- Use for observation
 - Feed consumption
 - Animal health
- Do not use as the <u>only</u> tool to adjust feeding rate
 - High variability based on size, shape, number and location of trays used

Feeding Rate Adjustment based on Feeding Tray Observation

Check Tray Observation							
No feed remaining	No shrimp	Increase feed by 10-20%					
Small amount of feed remaining	Many shrimp	Increase feed by 5%					
Moderate amount of feed remaining	Many shrimp	Maintain the feeding rate					
Lot of feed remaining	Few or no shrimp	Reduce the feed					
Plenty of long fecal strands		Maintain the feeding rate					
Reduced amount of and short fecal strands		Increase the feeding rate					

OBSERVING THE GUT

Source: Ching, 2011

ADJUSTING FEEDING RATES BASED ON ENVIRONMENTAL CONDITIONS

Temperature	Feed		
< 26°C	Reduce 25% of Normal Feed		
28°C - 32°C	Normal Feed		
> 34°C	Reduce 20% of Normal Feed		

Do not feed when DO levels drop below 4 ppm

FEEDING RATE REQUIRES ADJUSTMENT BASED ON NUTRIENT DENSITY TOO

- Shrimp need less of feeds that are more nutrient dense (higher in protein and energy) when compared to feeds of lower protein and energy
- Reduce feeding rate when feeds with higher nutrient density are used
- Dietary protein from 1 kg of a 33% protein feed can be provided by 0.87 kg of a 38% protein feed

		Standard	New
Shrimp ABW(g)	Feed Code	% bw/d	% bw/d
3.0 - 5.0	3C/3SP	5.5 - 5.0	5.5 - 5.0
5.0 - 7.5	3SP	5.0 - 4.0	5.0 - 4.0
7.5 - 10.0	3SP/3P -	4.0 - 3.5	4.0 - 3.5
10.0 - 12.5		3.5 - 3.1	3.5 - 3.1
12.5 - 15.0	3P -	3.1 - 2.9	3.1 - 2.9
15.0 - 17.5		2.9 - 2.6	<mark>2.9 - 2.4</mark>
17.5 - 20.0		2.6 - 2.4	<mark>2.4 - 2.2</mark>
20.0 - 22.5		2.4 - 2.3	<mark>2.2 - 2.0</mark>
22.5 - 25.0		2.3 - 2.2	<mark>2.0 - 1.9</mark>
25.0 - 27.5	3P/4S	2.2 - 2.1	<mark>1.8</mark>
27.5 - 30.0		2.1 - 2.0	<mark>1.75</mark>
> 30.0		2	<mark>1.6</mark>

* Some progressive farmers advocate limiting feed to 1.8-2.4% bw/d once animals reach 10 g and to never exceed 2% bw/d during periods of very high water temperature

		D		C
A	B	Ī		

ARRIVING AT DAILY RATIONS

Farm-specific

Based on observations and data

Use check tray AND feeding table

Be willing to adjust daily

Stay within lower and upper limits based on pond biomass and carrying capacity

DAILY RATION CALCULATION

Method 1: FCR & Weight Gain Driven

 Average Weekly Feed = Estimated Population x Expected FCR x Expected Weekly Growth

Example:

- Estimated Population = 100000
- Expected FCR = 0.8
- Expected Weekly Growth = 2.00g
- AWF = 100000 x 0.8 x 2 = 160 kg
- ADF = 160/7 = 22.85 kg

Method 2: Size & Feeding Rate Driven

 Average Weekly Feed = Estimated Population x Expected ABW x Suggested Feeding Rate/Day for the Expected ABW x 7

Example:

- Estimated Population = 100000
- Expected ABW = 14.28 g
- Suggested Feeding Rate = 2.95%
- AWF = 100000 x 14.28 x (2.95/100) x 7 = 294.88 kg
- ADF = 294.88/7 = 42.12 kg

* Some progressive farmers advocate limiting feed to 1.8-2.4% bw/d once animals reach 10 g and to never exceed 2% bw/d during periods of very high water temperature

MANUAL FEEDING VS AUTOMATIC FEEDING

- Increasing feeding frequency improves feed efficiency
- Manual feeding by labor requires close supervision
- Automatic feeding is preferred over manual feeding by large and more organized farms
- Two main types of automatic feeders:
 - Ration is set by the farmer and delivered using a timer
 - Acoustic Feeder: Ration is driven by the shrimp's feeding activity which is transmitted to the feeder as signals of sound
- Studies demonstrate vast improvements in feed efficiency when acoustic feeders are used

	Pond	Density/M		Nursery	Grow out	Nursery		Biomass	Survival	L
S.No.	No.	2	Feed	DOC	DOC	ABW	ABW(g)	(Kgs)	(%)	FCR
1	Gl	19	F15	27	37	1.33	12.82	1130	66	0.96
2	G2	19	F15	27	43	1.33	11.90	1437	78	1.00
3	G3	25	F15	47	59	3.00	18.86	3028	90	0.95
4	G4	19	F15	40	36	2.00	17.54	1710	65	0.90
5	G7	17	F15	24	82	0.77	24.40	3606	87	1.00
6	F2	23	F15	40	34	2.00	14.29	1526	59	1.09
7	F3	21	F15	24	67	0.95	20.83	4861	80	0.92
8	F4	25	F15	24	70	0.83	21.73	4437	81	0.87

RESULTS FROM GROWEL DEMO FARM IN NANDAMURU USING NURSERY REARING, FUNCTIONAL FEEDS, AUTOFEEDER & SYNBIOTICS

Based on Valuable Inputs from:

NAME AND TOP ADD

V. Balasubramaniam, Pondichery Saji Chacko, Onaway Foods, Gujarat Parinda Kamchum, Bentoli Agrinutrition, Thailand Haris Muhtadi, CJ Feed, Indonesia Sreeram Raavi, Eruvaka Technologies, Andhra Pradesh Bangaru Ravikumar, Growel Feeds, Andhra Pradesh Manoj Sharma, Mayank Enterprises, Gujarat Setyo Wahyoko, PT Intraco, Indonesia

Questions?

victor@unitedresearch.biz